欢迎访问贵州生活资讯网  今天是 2024年05月05日 星期天

当前位置: 首页 > 科技

河师大学者研发聚酰胺纳米膜,可用于盐湖提锂与工业废水近零排放

来源:DeepTech深科技

近日,河南师范大学远冰冰教授等人开展了纳滤膜的结构研究,解决了分离膜在应用过程中离子分离效率低的问题。

图 | 远冰冰(来源:远冰冰)图 | 远冰冰(来源:远冰冰)

研究中,他们合成了三种具有不同外围官能团的树状大分子:芳香族羧基树枝状大分子、脂肪链状羧基树枝状大分子、酚羟基封端树枝状大分子。

之后,他们发现这些功能化的树枝状大分子可以在哌嗪溶液中去质子化,进而形成稳定的溶液,同时通过静电自组装形成规则的纳米颗粒。

随后,他们详细研究了自组装树枝状大分子的纳米颗粒大小、外围电荷及形成机理。

结果发现,由于 PIP 溶液与羧基、以及酚羟基树状大分子之间的静电相互作用存在差异,让上述三种树枝状大分子,分别在哌嗪水溶液中呈现出八面体、立方体及球体形态。

另外,通过控制 PIP 溶液浓度,自组装树枝状大分子的纳米颗粒外围可以携带不同的电荷。基于此,他们制备了具有自组装树枝状大分子的水相哌嗪溶液。

图 | 自组装树枝状大分子水相 PIP 溶液的制备和表征(来源:Nature Communications)图 | 自组装树枝状大分子水相 PIP 溶液的制备和表征(来源:Nature Communications

而后,课题组采用具有自组装树枝状大分子的水相哌嗪溶液,与酰氯单体进行界面聚合,借此制备了聚酰胺纳米膜。

同时,为了更好地制备无缺陷、高渗透通量的聚酰胺纳米膜,他们在树枝状大分子多孔层改性的聚砜载体上进行界面聚合反应。

表征结果显示:所制备的聚酰胺纳米膜仍为非对称结构,同时能通过形成具有中空纳米条纹的结构,来保持优异的渗透通量。

值得注意的是,自组装树状分子在界面聚合中表现出良好的相容性和包埋稳定性,通过将其嵌在纳米条纹聚丙烯酸酯层周围,可以进一步优化水的运输通道。

图 | 自组装树状大分子聚酰胺纳米膜膜形貌与结构(来源:Nature Communications)图 | 自组装树状大分子聚酰胺纳米膜膜形貌与结构(来源:Nature Communications

而在盐湖提锂和工业废水零排放中,Li+/Mg2+和 Cl/SO42–的分离,被认为是实现资源管理循环的一种重要方法。

为此,他们研究了自组装聚酰胺树枝状大分子纳滤膜的离子筛分性能,并通过溶液扩散电迁移模型,使用实验数据拟合离子渗透性,研究了将自组装树枝状大分子纳滤膜用于 Li+/Mg2+ 分离的优势。

结果表明,本次设计的纳滤膜在 Cl/SO42–、Li+/Mg2+ 分离选择性和相应的水渗透通量上,能够实现更好的平衡。

一般来说,增加 Li+ 渗透性与水渗透性的比值,可以提升锂回收率。而增加 Li+ 渗透性与 Mg2+ 渗透性的比值可提升锂在渗透侧的纯度。

因此,本次纳滤膜可以实现更高的锂回收率和锂纯度。在模拟操作中,与其他类型膜相比,采用更少的膜面积可以达到同样的锂回收率。

图 | 离子分离性能和渗透性(来源:Nature Communications)图 | 离子分离性能和渗透性(来源:Nature Communications

最后,该团队通过分子模拟的方法,研究了聚酰胺纳米膜内部的孔径结构。

结果发现,自组装树枝状大分子聚酰胺纳米膜表现出更窄的孔径范围和更均匀的孔隙结构,离子筛分范围也得以增加,因此更有利于进行有效的离子分离。

图 | 分子模拟(来源:Nature Communications)图 | 分子模拟(来源:Nature Communications

据了解,离子选择性分离技术——是水处理、资源开发、能源存储和转换等领域的共性需求。

近年来随着能源储备领域的迅猛发展,高纯锂的需求激增。而从盐湖卤水中提锂,是保障我国锂资源供给的重要途径。

目前来看,从盐湖卤水中提取锂资源,主要是将锂离子与卤水中的镁离子分离。

另一方面,在煤化工与石油化工领域,如何实现高盐废水的近零排放,是实现资源循环利用和绿色低碳高质量发展的重要一环。

从成分来看,高盐废水中的主要成份是氯化钠和硫酸钠,即需要将氯离子与硫酸根离子分开。

因此,在工业废水近零排放和盐湖提锂等领域,开发高效、环保、经济的离子分离技术十分关键。

在众多分离技术中,凭借无相变、易于与精馏 & 吸附 & 萃取等技术耦合,膜分离技术已在海水淡化、苦咸水处理、工业废水处理等领域得到广泛应用,并已成为一种公认的高效节能型分离技术。

目前,业界普遍使用的水处理膜作为聚合物膜。它的里面是一种复合结构:

下层为无纺布,可以提供机械强度;

中层为超滤支撑层,为上层纳米层提供支撑;

上层为活性分离层,能实现分离浓缩的效果。

其中,活性分离层采用聚酰胺的材质,并由小分子的水相胺单体与油相单体,在水油两相界面处经聚合而成。

聚酰胺的这种结构特征,让其拥有独特的离子分离能力。

以聚酰胺纳滤膜为例,其由共平面的均苯三甲酰氯和扭曲的哌嗪(PIP,Piperazine)经过扩散聚合制备而来,因此具有一定的离子分离能力,这通常表现为较低的 Mg2+ 截留率与较高的 Li+ 截留率。

同时,它的水通量比较低。原因在于,在快速且随机的交联反应之中,上述两种单体往往倾向于形成具有多尺度不均匀性的纳米孔。

那么,如何微调分离膜的内部孔结构,以使其变得均匀,并能同时提高有效孔面积?

基于这一背景,远冰冰等人开展了本次研究。其中,第三位审稿人给予了较高的评价。

首先,该审稿人认为一、二价离子的精细分离,特别是 Li+/Mg2+ 分离这一研究课题十分重要,原因在于资源回收(例如“卤水采矿”的慨念)正吸引着越来越多人的关注,并被视为是实现资源管理循环的核心之一。

其次,这名审稿人认为论文也详细介绍了如何在聚酰胺纳米膜结构中嵌入羧基和酚羟基的树枝状聚合物,及其相关纳米膜的合成、表征和性能测试。

最后,审稿人认为由于各种的基于树枝状聚合物的实施方案,最终实现了令人印象深刻的 Li+/Mg2+ 选择性。

总的来说,这的确是 Li+– 回收膜研发领域的一个令人振奋的成果,在盐湖提锂与工业废水近零排放领域有着巨大的应用前景。

目前,远冰冰计划与膜制造企业合作,希望早日让具有优异锂镁分离的膜产品从实验室走向工业界。

参考资料:

1.Yuan, B., Zhang, Y., Qi, P.et al. Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation. Nat Commun 15, 471 (2024). https://doi.org/10.1038/s41467-023-44530-2

运营/排版:何晨龙

纳米 新浪众测 新浪众测 新浪科技公众号 新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

相关新闻
本文来源于网络,不代表贵州生活资讯网立场,转载请注明出处
我要收藏
0个赞
转发到:
腾讯云秒杀
阿里云服务器